

KEY WORDS

- ✓ Hyaluronic acid
- ✓ Osteoarthritis
- ✓ Ozone
- ✓ Cartilage
- ✓ Rat

CONTACT

E-MAIL: elifunluvetmed@gmail.com

THESIS SUPERVISOR

TELEPHONE: +90 224 2940839

E-MAIL: ngul@uludag.edu.tr

CLINICAL, COMPUTED TOMOGRAPHIC,
HISTOPATHOLOGICAL, IMMUNOHISTOCHEMICAL, AND
SEROLOGICAL INVESTIGATION OF THE EFFICACY OF
OZONE, HYALURONIC ACID, AND OZONE-HYALURONIC
ACID COMBINATION IN AN EXPERIMENTALLY INDUCED
OSTEOARTHRITIS MODEL IN RATS

Elif UNLU

0009-0005-4173-7548
BURSA ULUDAG UNIVERSITY
GRADUATE SCHOOL OF HEALTH SCEINCES
VETERINARY SURGERY DEPARTMENT
PhD PROGRAM

GRADUATION DATE: 25.04.2025

SUPERVISOR

Prof. Dr. Nihal Y. Gül Satar 0000-0002-3505-3394 BURSA ULUDAG UNIVERSITY GRADUATE SCHOOL OF HEALTH SCIENCES VETERİNARY SURGERY DEPARTMENT BURSA – TÜRKİYE

THESIS ABSTRACT

This study investigated the comparative effects of intra-articular ozone, hyaluronic acid (HA), their combination, and systemic ozone therapy in a rat model of knee osteoarthritis induced by cranial cruciate ligament transection. The results showed that intra-articular ozone and the ozone-HA combination had notable chondroprotective and structural benefits. Histopathological and biochemical findings indicated reduced tissue damage and improved healing, highlighting the therapeutic potential of ozone, especially in combination with HA.

APPLICATION AREAS OF THE THESIS RESULTS

In conclusion, the ozone-HA combination therapy was shown to provide both structural protection and biochemical improvement. The synergy between the anti-inflammatory and antioxidant properties of ozone and the viscoelastic and cell-supportive effects of HA enhanced therapeutic efficacy. These findings not only offer valuable insights for clinical application but may also pave the way for novel treatment approaches in veterinary orthopedics.

ACADEMIC ACTIVITIES

1-Tuncludemir, Z., Cinar, I. C., Kupeli, Z. A., Ünlü, E., & Yalcin, S. (2024). In vivo comparison of customized zirconia barriers in guided bone regeneration: An experimental study. Heliyon, 10(11).

2- TÜBİTAK 1001 Project (121M309): "Long-term implantation of bilayered small-caliber vascular grafts produced from biodegradable polymeric fibers into the porcine carotid artery and holistic analysis of the preclinical process." — Research Scholarship Holder.

3- Ünlü, E., Gül Satar, N. Y., Kahya Demirbilek, S., & Beker, S. (2025). Culture-guided management of recurrent otitis externa in a cat: A case report. 1st International Cyprus Congress of Scientific Research, 21–23 March 2025, Near East University, Nicosia, TRNC, pp. 41–42.